Remote Tube Bending Lab

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

RUHR UNIVERSITÄT BOCHUM RUB τυ

serörderr vom Bundesministerium für Bildung

und Forschung

R) I

UNIVERSIT

RUHR UNIVERSITÄT BOCHUM

RUB

Combining theory with praxis- Improved learning experience

Literature

"Laboratory teaching assumes that <u>first hand experience</u> in observation and manipulation of the materials of science is <u>superior</u> to other methods of developing <u>understanding and appreciation</u>. It is frequently used to develop <u>skills necessary for more advanced study or research</u>" *Gage, N. L., et al. (1963)*

"Sustained investments in hands-on experiences help inspire students to further their education and prepare them for high-technology careers by fostering skills sought by potential employers."

American Chemical Society

Feedback from Students

"I would like more <u>interaction with physical objects</u> to better understand some concepts"

"Somethings are still behind foggy clouds since there are too much theory. I am a better understander <u>when I see something</u> with my eyes..."

UNIVERSITÄT

BOCHUM

ceröndent vom Bundesministeriu für Bildung

und Forschun

4

MOTIVATION FOR A REMOTE LAB

Globalised education

Resource efficiency

JNIVERSIT

(Source: Vectorstock; steemit; lightremaine)

MOTIVATION FOR A REMOTE LAB

MOTIVATION FOR A REMOTE TUBE BENDING LAB

ELLI1

Remote Material Testing Cell

ELLI2

Labs with standard forming process /industrial machines

GEFÖRDERT VOM

J technische universität dortmund

Remote Tube Bending Lab

8

GEFÖRDERT VOM

RUHR UNIVERSITÄT BOCHUM

UNIVERSIT

RUB

ROTARY DRAW BENDING

technische universität

dortmund

RUB

UNIVERSITÄT BOCHUM

- 2 Mandrel rod
- 3 Wiper die holder

gefördert vom Bundesministerium

für Bildung

- 4 Tube rotation mechanism
- 5 Mandrel feed mechanism

ROTARY DRAW BENDING MACHINE

J technische universität dortmund

Transfluid DB 2060 CNC – Rotary Draw Bending Machine

Manufacturer	Transfluid
Tube diameters	20 - 60 mm
Max. length of tube	3000 mm
Max. bend radius	200 mm
Max. bend angle	190°
Max. bending moment	14.4 kNm
Max. bending speed	30 °/s

ruhr Universität Bochum

UNIVERSIT

RUB

GEFÖRDERT VOM Bundesministerium

für Bildung

Robot

KUKA KR90 R3700 K

Technical Data		
Maximum reach	3701 mm	
Rated payload	90 kg	
Rated supplementary load	50 kg	
Rated total load	140 kg	
Position repeatabilty	± 0.06 mm	
Number of axes	6	
Mounting position	Floor	
Footprint	830 mm x 830 mm	
Weight	1204 kg	
Protection rating	IP 65	
Controller	KR C4	

ruhr Universität Bochum

UNIVERSIT

RUB

technische universität dortmund

GEFÖRDERT VOM

Bundesministerium für Bildung

STRUCTURE OF THE REMOTE TUBE BENDING CELL

und Forschung

UNIVERSIT

SPECIMEN HANDLING SYSTEM

Requirements:

- Length and diameter independent storage
- Gap between individual tubes
- Accurate positioning to ensure repeatability

Cantilever racks

Mount with end stop

sefördert vom Bundesministeriur

für Bildung

und Forschung

Gripper

RUB

UNIVERSITÄT BOCHUM

OBSERVATION SYSTEM

Camera 1

Specimen loading and unloading

Complete view

eerörderr vom Bundesministerium

für Bildung

und Forschung

Camera 3

Forming zone

ruhr Universität Bochum

UNIVERSIT

serörderr vom Bundesministerium für Bildung

und Forschung

RUHR UNIVERSITÄT BOCHUM

UNIVERSIT

RUB

technische universität dortmund

Remote Tube Bending Lab

(REMOTE) TUBE BENDING LAB

Absence of a Reference Lab

(Source: Self-avenue)

GEFÖRDERT VOM

THE BORING TUBE BENDING LAB

$Hi \rightarrow Do This$, Do That! \rightarrow Learn this, Learn that! \rightarrow Bye

(Source: Odyssey)

GEFÖRDERT VOM

CONSTRUCTIVE ALIGNMENT

Kolb's Experiential Learning Cycle

GEFÖRDERT VOM

technische universität

dortmund

RUB

UNIVERSITÄT

BOCHUM

UNIVERSIT

Problem Based Learning

GEFÖRDERT VOM Bundesministeriun

für Bildung

und Forschung

(Source: Centre for Faculty Development and Innovation, Southern Illinois University)

21

Design of the lab using the product manufacture cycle as a reference

(Source: Classroom-clipart)

Remote Tube Bending Lab

GEFÖRDERT VOM

PROBLEM

technische universität

dortmund

"Every Problem is an Opportunity in Disguise"

- Steel pipeline to connect A and B
- Flow rate required: 40 m³/hr
- Flow velocity required: 10 m/s
- Regular pigging of the pipeline
- Mass production

RU

UNIVERSITÄT BOCHUM ΙH

GEFÖRDERT VOM Bundesministeriu

für Bildung

SOLUTION (PRODUCT DESIGN)

- Flow rate Q = Area * Velocity
- Pipe thickness $t = \frac{p \cdot D}{2(S \cdot E + p \cdot Y)}$
- Pigging Bend radii : 3-5 D
- Bend angle $\theta = 130^{\circ}$

JNIVERSII

RUHR UNIVERSITÄT BOCHUM

RUB

GEFÖRDERT VOM Bundesministeriun

für Bildung

und Forschung

PROCESS PLANNING

RUB

dortmund

UNIVERSITÄT

BOCHUM

JNIVERSIT

Recap of theory

für Bildung

VALIDATION AND TESTING

Springback not Springback calculated considered according to theory Actual Geometry ≠ Target Geometry AHA GEFÖRDERT VOM Bundesministerium RUHR UNIVERSITÄT RUB technische universität für Bildung dortmund und Forschung BOCHUM UNIVERSIT

CONTENTS

GEFÖRDERT VOM

UNIVERSIT

RUB τυ

RUHR UNIVERSITÄT BOCHUM

LEARNING OBJECTIVES

J technische universität dortmund

Lecture content \rightarrow Reinforcement through lab

RUHR UNIVERSITÄT BOCHUM

JNIVERSIT

RUB

Remote Tube Bending Lab

gefördert vom Bundesministerium

für Bildung

BENDING MOMENT: THEORY VS. REALITY

J technische universität dortmund

Theory

$$M_{B,ideal} = M_{B,el} + M_{B,pl} = \int_{A_{el}} \sigma(y) \cdot y \cdot dA + \int_{A_{pl}} \sigma(y) \cdot y \cdot dA$$
Process parameter
Friction
$$M_{B,real} = M_{B,ideal Tr} + M_{B,Dorn} \pm M_{B,pressure die}$$
Force sensor

RUHR UNIVERSITÄT

BOCHUM

JNIVERSIT

RUB

τυ

gefördert vom Bundesministerium

für Bildung

SPRINGBACK: THEORY VS. REALITY

J technische universität dortmund

Influencing parameters on springback

RUHR UNIVERSITÄT BOCHUM

UNIVERSIT

RUB

tU

gefördert vom Bundesministerium

für Bildung